Asymptotic Stability of Ascending Solitary Magma Waves
نویسندگان
چکیده
Coherent structures, such as solitary waves, appear in many physical problems, including fluid mechanics, optics, quantum physics, and plasma physics. A less studied setting is found in geophysics, where highly viscous fluids couple to evolving material parameters to model partially molten rock, magma, in the Earth’s interior. Solitary waves are also found here, but the equations lack useful mathematical structures such as an inverse scattering transform or even a variational formulation. A common question in all of these applications is whether or not these structures are stable to perturbation. We prove that the solitary waves in this Earth science setting are asymptotically stable and accomplish this without any pre-exisiting Lyapunov stability. This holds true for a family of equations, extending beyond the physical parameter space. Furthermore, this extends existing results on wellposedness to data in a neighborhood of the solitary waves.
منابع مشابه
Asymptotic stability of solitary waves in the Benney-Luke model of water waves
We study asymptotic stability of solitary wave solutions in the one-dimensional Benney-Luke equation, a formally valid approximation for describing two-way water wave propagation. For this equation, as for the full water wave problem, the classic variational method for proving orbital stability of solitary waves fails dramatically due to the fact that the second variation of the energy-momentum...
متن کاملStability of Solitary Waves in a Deformable Porous Media
Coherent structures, such as solitary waves, appear in many physical problems, including fluid mechanics, optics, quantum physics, and plasma physics. A less studied setting is found in geophysics, where highly viscous fluids couple to evolving material parameters to model partially molten rock, magma, in the Earth’s interior. Solitary waves are also found here, but the equations lack useful ma...
متن کاملAsymptotic Stability and Completeness in the Energy Space for Nonlinear Schrödinger Equations with Small Solitary Waves
In this paper, we study a class of nonlinear Schrödinger equations (NLS) which admit families of small solitary wave solutions. We consider solutions which are small in the energy space H, and decompose them into solitary wave and dispersive wave components. The goal is to establish the asymptotic stability of the solitary wave and the asymptotic completeness of the dispersive wave. That is, we...
متن کاملSolitary Waves and Their Linear Stability in Nonlinear Lattices
Solitary waves in a general nonlinear lattice are discussed, employing as a model the nonlinear Schrödinger equation with a spatially periodic nonlinear coefficient. An asymptotic theory is developed for long solitary waves, that span a large number of lattice periods. In this limit, the allowed positions of solitary waves relative to the lattice, as well as their linear stability properties, h...
متن کاملAsymptotic Linear Stability of Solitary Water Waves (10-CNA-15)
We prove an asymptotic stability result for the water wave equations linearized around small solitary waves. The equations we consider govern irrotational flow of a fluid with constant density bounded below by a rigid horizontal bottom and above by a free surface under the influence of gravity neglecting surface tension. For sufficiently small amplitude waves, with waveform well-approximated by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Math. Analysis
دوره 40 شماره
صفحات -
تاریخ انتشار 2008